Article ID: | iaor19971515 |
Country: | United Kingdom |
Volume: | 24 |
Issue: | 4 |
Start Page Number: | 385 |
End Page Number: | 397 |
Publication Date: | Aug 1996 |
Journal: | OMEGA |
Authors: | Hung M.S., Shanker M., Hu M.Y. |
Data transformation is a popular option in training neural networks. This study evaluates the effectiveness of two well-known transfomation methods: linear transformation and statistical standardization. These two are referred to as data standardization. A carefully designed experiment is used in which data from two-group classification problems were trained by feedforward networks. Different kinds of classification problems, from relatively simple to hard, were generated. Other experimental factors include network architecture, sample size, and sample proportion of group 1 members. Three performance measurements for the effect of data standardization are employed. The results suggest that networks trained on standardized data yield better results in general, but the advantage diminishes as network and sample size become large. In other words, neural networks exhibit a self-scaling capability. In addition, impact of data standardization on the performance of training algorithm in terms of computation time and number of iterations is evaluated. The results indicate that, overall, data standardization slows down training. Finally, these results are illustrated with a data set obtained from the American Telephone and Telegraph Company.