A {0,1}-matrix M is arborescence graphic if there exists an arborescence T such that the arcs of T are indexed on the rows of M and the columns of M are the incidence vectors of the arc sets of dipaths of T. If such a T exists, then T is an arborescence realization for M. This paper presents an almost-linear-time algorithm to determine whether a given {0,1}-matrix is arborescence graphic and, if so, to construct an arborescence realization. The algorithm is then applied to recognize a subclass of the extended-Horn satisfiability problems introduced by Chandru and Hooker.