Article ID: | iaor19962214 |
Country: | United Kingdom |
Volume: | 23 |
Issue: | 6 |
Start Page Number: | 559 |
End Page Number: | 571 |
Publication Date: | Jun 1996 |
Journal: | Computers and Operations Research |
Authors: | Brown Donald E., Huntley Christopher L. |
Keywords: | genetic algorithms |
This paper presents methods of applying local search to global optimization problems. The most common approach, multistart, selects the best solution from restarts of local search from random starting points. Partitional methods augment local search with general principles concerning the location of global optima in real space, significantly improving the effectiveness of local search in function optimization problems. Standard partitional methods, however, are not directly applicable to combinatorial optimization problems. The authors describe a genetic algorithm, GALO, that is similar to the partitional methods, but can be applied to combinatorial problems. Empirical results are presented for a parallel implementation of GALO that show it to be effective for the quadratic assignment problem.