Article ID: | iaor19961038 |
Country: | United Kingdom |
Volume: | 30 |
Issue: | 12 |
Start Page Number: | 81 |
End Page Number: | 96 |
Publication Date: | Dec 1995 |
Journal: | Computers & Mathematics with Applications |
Authors: | Duin A.C.N. van, Hansen P.C., Ostromsky Tz., Wijshoff H., Zlatev Z. |
Keywords: | computational analysis: parallel computers, matrices |
Coarse grain parallel codes for solving sparse systems of linear algebraic equations can be developed in several different ways. The following procedure is suitable for some parallel computers. A preliminary reordering of the matrix is first applied to move as many zero elements as possible to the lower left corner. After that the matrix is partitioned into large blocks and the blocks in the lower left corner contain only zero elements. An attempt to obtain a good load-balance is carried out by allowing the diagonal blocks to be rectangular. While the algorithm based on the above ideas has good parallel properties, some stability problems may arise during the factorization because the pivotal search is restricted to the diagonal blocks. A simple