A polynomial-time algorithm for a class of linear complementarity problems

A polynomial-time algorithm for a class of linear complementarity problems

0.00 Avg rating0 Votes
Article ID: iaor19881229
Country: Netherlands
Volume: 44
Issue: 1
Start Page Number: 1
End Page Number: 26
Publication Date: May 1989
Journal: Mathematical Programming (Series A)
Authors: , ,
Keywords: computational analysis
Abstract:

Given an n×n matrix M and an n-dimensional vector q, the problem of finding n-dimensional vectors x and y satisfying y=Mx+q, x≥0, y≥0, xiyi=0 (i=1,2,...,n) is known as a linear complementarity problem. Under the assumption that M is positive semi-definite, this paper presents an algorithm that solves the problem in O(n3L) arithmetic operations by tracing the path of centers, {(x,y)∈S: xiyi=μ (i=1,2,...,n) for some μ∈0∈ of the feasible region S={(x,y)≥0: y=Mx+q∈, where L denotes the size of the input data of the problem.

Reviews

Required fields are marked *. Your email address will not be published.