Article ID: | iaor20174569 |
Volume: | 79 |
Issue: | 4 |
Start Page Number: | 1196 |
End Page Number: | 1232 |
Publication Date: | Dec 2017 |
Journal: | Algorithmica |
Authors: | Dodis Yevgeniy, Shamir Adi, Stephens-Davidowitz Noah, Wichs Daniel |
Keywords: | optimization, combinatorial optimization, security |
Random number generators (RNGs) play a crucial role in many cryptographic schemes and protocols, but their security proof usually assumes that their internal state is initialized with truly random seeds and remains secret at all times. However, in many practical situations these are unrealistic assumptions: The seed is often gathered after a reset/reboot from low entropy external events such as the timing of manual key presses, and the state can be compromised at unknown points in time via side channels or penetration attacks. The usual remedy (used by all the major operating systems, including Windows, Linux, FreeBSD, MacOS, iOS, etc.) is to periodically replenish the internal state through an auxiliary input with additional randomness harvested from the environment. However, recovering from such attacks in a provably correct and computationally optimal way had remained an unsolved challenge so far. In this paper we formalize the problem of designing an efficient recovery mechanism from state compromise, by considering it as an online optimization problem. If we knew the timing of the last compromise and the amount of entropy gathered since then, we could stop producing any outputs until the state becomes truly random again. However, our challenge is to recover within a time proportional to this optimal solution even in the hardest (and most realistic) case in which (a) we know nothing about the timing of the last state compromise, and the amount of new entropy injected since then into the state, and (b) any premature production of outputs leads to the total loss of all the added entropy