Solving linear optimization over arithmetic constraint formula

Solving linear optimization over arithmetic constraint formula

0.00 Avg rating0 Votes
Article ID: iaor20173618
Volume: 69
Issue: 1
Start Page Number: 69
End Page Number: 102
Publication Date: Sep 2017
Journal: Journal of Global Optimization
Authors: , , , , , , ,
Keywords: programming: constraints, heuristics, programming: linear, combinatorial optimization, control
Abstract:

Since Balas extended the classical linear programming problem to the disjunctive programming (DP) problem where the constraints are combinations of both logic AND and OR, many researchers explored this optimization problem under various theoretical or application scenarios such as generalized disjunctive programming (GDP), optimization modulo theories (OMT), robot path planning, real‐time systems, etc. However, the possibility of combining these differently‐described but form‐equivalent problems into a single expression remains overlooked. The contribution of this paper is two folded. First, we convert the linear DP/GDP model, linear‐arithmetic OMT problem and related application problems into an equivalent form, referred to as the linear optimization over arithmetic constraint formula (LOACF). Second, a tree‐search‐based algorithm named RS‐LPT is proposed to solve LOACF. RS‐LPT exploits the techniques of interval analysis and nonparametric estimation for reducing the search tree and lowering the number of visited nodes. Also, RS‐LPT alleviates bad construction of search tree by backtracking and pruning dynamically. We evaluate RS‐LPT against two most common DP/GDP methods, three state‐of‐the‐art OMT solvers and the disjunctive transformation based method on optimization benchmarks with different types and scales. Our results favor RS‐LPT as compared to existing competing methods, especially for large scale cases.

Reviews

Required fields are marked *. Your email address will not be published.