Article ID: | iaor2017104 |
Volume: | 33 |
Issue: | 2 |
Start Page Number: | 357 |
End Page Number: | 367 |
Publication Date: | Mar 2017 |
Journal: | Quality and Reliability Engineering International |
Authors: | Ge Daochuan, Yang Yanhua |
Keywords: | simulation |
Dynamic fault trees (DFTs) are powerful tools to model industrial systems having dynamic failure mechanisms, such as sequence‐ and function‐dependent failure behaviors. Yet for large and complex DFTs, their quantitative analyses are still of great challenges. Up to now, many researchers have presented several approaches to deal with this problem, and among which, the sum of disjoint products (SDP) methods, such as dynamic binary decision tree, sequential binary decision diagram (SBDD), and improved SBDD, have proven to be an efficient way. In SDP methods, negating a generalized cut sequence is an unavoidable task. Yet, for a complex cut sequence expression where normal, cold and warm spares basic events coexist, its negating operation is still difficult and needs to be further studied. In this paper, based on De Morgan theorem, improved explicit formulas for negating a generalized cut sequences are presented. The new concept of universal set of basic event and its operating rules are proposed to deduce the simplified expressions of general enforcing occurring cut sequences and warm spares occurring cut sequences. To validate the presented approaches, a typical system DFT is analyzed. The results indicate the reasonability and effectiveness of the improved negating formulas.