Joint Modeling of Survival and Longitudinal Ordered Data Using a Semiparametric Approach

Joint Modeling of Survival and Longitudinal Ordered Data Using a Semiparametric Approach

0.00 Avg rating0 Votes
Article ID: iaor20162933
Volume: 58
Issue: 2
Start Page Number: 153
End Page Number: 172
Publication Date: Jun 2016
Journal: Australian & New Zealand Journal of Statistics
Authors: , , , ,
Keywords: medicine, statistics: empirical
Abstract:

Medical research frequently focuses on the relationship between quality of life (QoL) and survival time of subjects. QoL may be one of the most important factors that could be used to predict survival, making it worth identifying factors that jointly affect survival and QoL. We propose a semiparametric joint model that consists of item response and survival components, where these two components are linked through latent variables. Several popular ordinal models are considered and compared in the item response component, while the Cox proportional hazards model is used in the survival component. We estimate the baseline hazard function and model parameters simultaneously, through a profile likelihood approach. We illustrate the method using an example from a clinical study.

Reviews

Required fields are marked *. Your email address will not be published.