Article ID: | iaor20164773 |
Volume: | 29 |
Issue: | 1 |
Start Page Number: | 36 |
End Page Number: | 53 |
Publication Date: | Feb 2017 |
Journal: | INFORMS Journal on Computing |
Authors: | Mehrotra Sanjay, Huang Kuo-Ling |
Keywords: | programming: convex, heuristics, programming: quadratic |
We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadratic programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. We also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).