Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming

Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming

0.00 Avg rating0 Votes
Article ID: iaor20164453
Volume: 28
Issue: 4
Start Page Number: 736
End Page Number: 751
Publication Date: Nov 2016
Journal: INFORMS Journal on Computing
Authors: , ,
Keywords: programming: integer, cutting stock, heuristics
Abstract:

We propose a framework to model general guillotine restrictions in two‐dimensional cutting problems formulated as mixed‐integer linear programs (MIPs). The modeling framework requires a pseudopolynomial number of variables and constraints, which can be effectively enumerated for medium‐size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within a state‐of‐the‐art MIP solver, can tackle instances of challenging size. We mainly concentrate our analysis on the guillotine two‐dimensional knapsack problem (G2KP), for which a model, and an exact procedure able to significantly improve the computational performance, are given. We also show how the modeling of general guillotine cuts can be extended to other relevant problems such as the guillotine two‐dimensional cutting stock problem and the guillotine strip packing problem (GSPP). Finally, we conclude the paper discussing an extensive set of computational experiments on G2KP and GSPP benchmark instances from the literature.

Reviews

Required fields are marked *. Your email address will not be published.