Efficient VaR and CVaR Measurement via Stochastic Kriging

Efficient VaR and CVaR Measurement via Stochastic Kriging

0.00 Avg rating0 Votes
Article ID: iaor20164200
Volume: 28
Issue: 4
Start Page Number: 629
End Page Number: 644
Publication Date: Nov 2016
Journal: INFORMS Journal on Computing
Authors: ,
Keywords: stochastic processes
Abstract:

In this paper, stochastic kriging (SK) is considered as a metamodeling tool to capture risk‐related properties of complex stochastic system outputs. To better assess the tail behavior of the underlying distribution of a system output, we specifically focus on global prediction of value‐at‐risk and conditional value‐at‐risk. Going beyond the standard SK framework intended for metamodeling of mean response surfaces, we rethink the original formulation to allow for the flexibility of utilizing different estimation methods for metamodel construction. The resulting impact on the predictive performance of SK is examined in detail. In parallel with the study by Chen et al. [Chen X, Ankenman BE, Nelson BL (2013) Enhancing stochastic kriging metamodels with gradient estimators. Oper. Res. 61(2):512–528], we further consider the situation in which noisy gradient information can be incorporated into SK metamodel construction and prediction. The theoretical results are illustrated by two numerical examples.

Reviews

Required fields are marked *. Your email address will not be published.