A MapReduce-based distributed SVM algorithm for automatic image annotation

A MapReduce-based distributed SVM algorithm for automatic image annotation

0.00 Avg rating0 Votes
Article ID: iaor20119609
Volume: 62
Issue: 7
Start Page Number: 2801
End Page Number: 2811
Publication Date: Oct 2011
Journal: Computers and Mathematics with Applications
Authors: , , ,
Keywords: statistics: regression, learning
Abstract:

Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) have been used extensively due to their generalization properties. However, SVM training is notably a computationally intensive process especially when the training dataset is large. This paper presents MRSMO, a MapReduce based distributed SVM algorithm for automatic image annotation. The performance of the MRSMO algorithm is evaluated in an experimental environment. By partitioning the training dataset into smaller subsets and optimizing the partitioned subsets across a cluster of computers, the MRSMO algorithm reduces the training time significantly while maintaining a high level of accuracy in both binary and multiclass classifications.

Reviews

Required fields are marked *. Your email address will not be published.