Article ID: | iaor20118866 |
Volume: | 62 |
Issue: | 5 |
Start Page Number: | 2314 |
End Page Number: | 2329 |
Publication Date: | Sep 2011 |
Journal: | Computers and Mathematics with Applications |
Authors: | Yin Xiaoling, Wu Jinbiao |
Keywords: | simulation |
This paper deals with an M/G/1 retrial queue with negative customers and non‐exhaustive random vacations subject to the server breakdowns and repairs. Arrivals of both positive customers and negative customers are two independent Poisson processes. A breakdown at the busy server is represented by the arrival of a negative customer which causes the customer being in service to be lost. The server takes a vacation of random length after an exponential time when the server is up. We develop a new method to discuss the stable condition by finding absorb distribution and using the stable condition of a classical M/G/1 queue. By applying the supplementary variable method, we obtain the steady‐state solutions for both queueing measures and reliability quantities. Moreover, we investigate the stochastic decomposition law. We also analyse the busy period of the system. Some special cases of interest are discussed and some known results have been derived. Finally, an application to cellular mobile networks is provided and the effects of various parameters on the system performance are analysed numerically.