Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited

Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited

0.00 Avg rating0 Votes
Article ID: iaor2016690
Volume: 32
Issue: 2
Start Page Number: 609
End Page Number: 622
Publication Date: Mar 2016
Journal: Quality and Reliability Engineering International
Authors: , ,
Keywords: control
Abstract:

One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart &Xmacr; chart along with a Shewhart R (or an S) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the (&Xmacr;,R) charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the (&Xmacr;,R) charting scheme correctly in practice. Examples are given along with a summary and some conclusions.

Reviews

Required fields are marked *. Your email address will not be published.