Article ID: | iaor2016389 |
Volume: | 32 |
Issue: | 1 |
Start Page Number: | 139 |
End Page Number: | 151 |
Publication Date: | Feb 2016 |
Journal: | Quality and Reliability Engineering International |
Authors: | Li Dong, Ge Daochuan, Chou Qiang, Zhang Ruoxing, Yang Yanhua |
Keywords: | simulation, decision, statistics: decision |
Dynamic fault tree (DFT) is a commonly used method to model systems having sequence‐dependent and function‐dependent failure behaviors. The failure structure function of a DFT can be expressed by logic OR of all minimal cut sequences, that is, minimal cut sequence set (MCSS). The occurrence probability to the top event of a DFT can be calculated using inclusion–exclusion (IE) principle based on enumerating the MCSS. However, the IE‐based approach would have exponential evaluation complexity. Then, a sequential binary decision diagram (SBDD)‐based method is proposed and successfully applied to analyze simple dynamic systems. This method is more efficient than IE‐based method in asymptotic analysis. But this method cannot handle complex systems modeled by different highly coupled dynamic gates. In this paper, we put forward using Independent Random Variable Probabilistic Model‐based plus SBDD‐based methods to quantify an MCSS to obtain the failure probability of a complex DFT. The results obtained by the proposed method are exactly matched with those obtained by the existing methods. In addition, this method enhances the analyzing ability of the original SBDD and retains the advantage of high computational efficiency. The application and advantage of our proposed method is demonstrated by a case study.