Inference from PseudoLikelihoods with Plug-In Estimates

Inference from PseudoLikelihoods with Plug-In Estimates

0.00 Avg rating0 Votes
Article ID: iaor201529093
Volume: 57
Issue: 3
Start Page Number: 347
End Page Number: 361
Publication Date: Sep 2015
Journal: Australian & New Zealand Journal of Statistics
Authors: , ,
Keywords: statistics: general
Abstract:

Effective implementation of likelihood inference in models for high‐dimensional data often requires a simplified treatment of nuisance parameters, with these having to be replaced by handy estimates. In addition, the likelihood function may have been simplified by means of a partial specification of the model, as is the case when composite likelihood is used. In such circumstances tests and confidence regions for the parameter of interest may be constructed using Wald type and score type statistics, defined so as to account for nuisance parameter estimation or partial specification of the likelihood. In this paper a general analytical expression for the required asymptotic covariance matrices is derived, and suggestions for obtaining Monte Carlo approximations are presented. The same matrices are involved in a rescaling adjustment of the log likelihood ratio type statistic that we propose. This adjustment restores the usual chi‐squared asymptotic distribution, which is generally invalid after the simplifications considered. The practical implication is that, for a wide variety of likelihoods and nuisance parameter estimates, confidence regions for the parameters of interest are readily computable from the rescaled log likelihood ratio type statistic as well as from the Wald type and score type statistics. Two examples, a measurement error model with full likelihood and a spatial correlation model with pairwise likelihood, illustrate and compare the procedures. Wald type and score type statistics may give rise to confidence regions with unsatisfactory shape in small and moderate samples. In addition to having satisfactory shape, regions based on the rescaled log likelihood ratio type statistic show empirical coverage in reasonable agreement with nominal confidence levels.

Reviews

Required fields are marked *. Your email address will not be published.