Maximizing the net present value of a Steiner tree

Maximizing the net present value of a Steiner tree

0.00 Avg rating0 Votes
Article ID: iaor201526128
Volume: 62
Issue: 2
Start Page Number: 391
End Page Number: 407
Publication Date: Jun 2015
Journal: Journal of Global Optimization
Authors: , , , ,
Keywords: optimization, networks: flow
Abstract:

The theory of Steiner trees has been extensively applied in physical network design problems to locate a Steiner point that minimizes the total length of a tree. However, maximizing the total generated cash flows of a tree has not been investigated. Such a tree has costs associated with its edges and values associated with nodes. In order to reach the nodes in the tree, the edges need to be constructed. The edges are constructed in a particular order and the costs of constructing the edges and the values at the nodes are discounted over time. These discounted costs and values generate cash flows. In this paper, we study the problem of optimally locating a single Steiner point so as to maximize the sum of all the discounted cash flows, known as the net present value (NPV). An application of this problem occurs in underground mining where, we want to optimally locate a junction point in the underground access network to maximize the NPV. We propose an efficient iterative algorithm to optimally locate a single degree‐3 Steiner point. We show this algorithm converges quickly and the Steiner point is unique subject to realistic design parameters.

Reviews

Required fields are marked *. Your email address will not be published.