Article ID: | iaor19931164 |
Country: | United States |
Volume: | 39 |
Issue: | 3 |
Start Page Number: | 378 |
End Page Number: | 406 |
Publication Date: | May 1991 |
Journal: | Operations Research |
Authors: | Aragon Cecilia R., McGeoch Lyle A., Schevon Catherine, Johnson Davis S. |
Keywords: | graphs |
This is the second in a series of three papers that empirically examine the competitiveness of simulated annealing in certain well-studied domains of combinatorial optimization. Simulated annealing is a randomized technique proposed by S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi for improving local optimization algorithms. Here the authors report on experiments at adapting simulated annealing to graph coloring and number partitioning, two problems for which local optimization had not previously been thought suitable. For graph coloring, they report on three simulated annealing schemes, all of which can dominate traditional techniques for certain types of graphs, at least when large amounts of computing time are available. For number partitioning, simulated annealing is not competitive with the differencing algorithm of N. Karmarkar and R.M. Karp, except on relatively small instances. Moreover, if running time is taken into account, natural annealing schemes cannot even outperform multiple random runs of the local optimization algorithms on which they are based, in sharp contrast to the observed performance of annealing on other problems.