Approximation algorithms for capacitated stochastic inventory systems with setup costs

Approximation algorithms for capacitated stochastic inventory systems with setup costs

0.00 Avg rating0 Votes
Article ID: iaor201524023
Volume: 61
Issue: 4
Start Page Number: 304
End Page Number: 319
Publication Date: Jun 2014
Journal: Naval Research Logistics (NRL)
Authors: , , ,
Keywords: stochastic processes, control
Abstract:

We develop the first approximation algorithm with worst‐case performance guarantee for capacitated stochastic periodic‐review inventory systems with setup costs. The structure of the optimal control policy for such systems is extremely complicated, and indeed, only some partial characterization is available. Thus, finding provably near‐optimal control policies has been an open challenge. In this article, we construct computationally efficient approximate optimal policies for these systems whose demands can be nonstationary and/or correlated over time, and show that these policies have a worst‐case performance guarantee of 4. We demonstrate through extensive numerical studies that the policies empirically perform well, and they are significantly better than the theoretical worst‐case guarantees. We also extend the analyses and results to the case with batch ordering constraints, where the order size has to be an integer multiple of a base load.

Reviews

Required fields are marked *. Your email address will not be published.