Phase I Analysis of Individual Observations with Missing Data

Phase I Analysis of Individual Observations with Missing Data

0.00 Avg rating0 Votes
Article ID: iaor201523826
Volume: 30
Issue: 4
Start Page Number: 559
End Page Number: 569
Publication Date: Jun 2014
Journal: Quality and Reliability Engineering International
Authors: , ,
Keywords: simulation: applications, statistics: experiment
Abstract:

The effect of the methods for handling missing values on the performance of Phase I multivariate control charts has not been investigated. In this paper, we discuss the effect of four imputation methods: mean substitution, regression, stochastic regression and the expectation maximization algorithm. Estimates of mean vector and variance covariance matrix from the treated data set are used to estimate the unknown parameters in the Hotelling's T2 chart statistic. Based on a Monte Carlo simulation study, the performance of each of the four methods is investigated in terms of its ability to obtain the nominal in‐control and out‐of‐control overall probability of a signal. We consider three sample sizes, five levels of the percentage of missing values and three types of variable numbers. Our simulation results show that the stochastic regression method has the best overall performance among all the competing methods.

Reviews

Required fields are marked *. Your email address will not be published.