Article ID: | iaor201524983 |
Volume: | 55 |
Issue: | 4 |
Start Page Number: | 421 |
End Page Number: | 434 |
Publication Date: | Dec 2013 |
Journal: | Australian & New Zealand Journal of Statistics |
Authors: | Liu Wei, Zhou Sanyu, Bretz Frank |
Keywords: | medicine, statistics: regression |
Exact simultaneous confidence bands (SCBs) for a polynomial regression model are available only in some special situations. In this paper, simultaneous confidence levels for both hyperbolic and constant width bands for a polynomial function over a given interval are expressed as multidimensional integrals. The dimension of these integrals is equal to the degree of the polynomial. Hence the values can be calculated quickly and accurately via numerical quadrature provided that the degree of the polynomial is small (e.g. 2 or 3). This allows the construction of exact SCBs for quadratic and cubic regression functions over any given interval and for any given design matrix. Quadratic and cubic regressions are frequently used to characterise dose response relationships in addition to many other applications. Comparison between the hyperbolic and constant width bands under both the average width and minimum volume confidence set criteria shows that the constant width band can be much less efficient than the hyperbolic band. For hyperbolic bands, comparison between the exact critical constant and conservative or approximate critical constants indicates that the exact critical constant can be substantially smaller than the conservative or approximate critical constants. Numerical examples from a dose response study are used to illustrate the methods.