Parallel metaheuristics: recent advances and new trends

Parallel metaheuristics: recent advances and new trends

0.00 Avg rating0 Votes
Article ID: iaor201524306
Volume: 20
Issue: 1
Start Page Number: 1
End Page Number: 48
Publication Date: Jan 2013
Journal: International Transactions in Operational Research
Authors: , ,
Keywords: computational analysis: parallel computers
Abstract:

The field of parallel metaheuristics is continuously evolving as a result of new technologies and needs that researchers have been encountering. In the last decade, new models of algorithms, new hardware for parallel execution/communication, and new challenges in solving complex problems have been making advances in a fast manner. We aim to discuss here on the state of the art, in a summarized manner, to provide a solution to deal with some of the growing topics. These topics include the utilization of classic parallel models in recent platforms (such as grid/cloud architectures and GPU/APU). However, porting existing algorithms to new hardware is not enough as a scientific goal, therefore researchers are looking for new parallel optimization and learning models that are targeted to these new architectures. Also, parallel metaheuristics, such as dynamic optimization and multiobjective problem resolution, have been applied to solve new problem domains in past years. In this article, we review these recent research areas in connection to parallel metaheuristics, as well as we identify future trends and possible open research lines for groups and PhD students.

Reviews

Required fields are marked *. Your email address will not be published.