The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems

The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems

0.00 Avg rating0 Votes
Article ID: iaor20141817
Volume: 67
Issue: 10
Start Page Number: 1954
End Page Number: 1959
Publication Date: Jun 2014
Journal: Computers and Mathematics with Applications
Authors: ,
Keywords: heuristics
Abstract:

In 2013, Bai and Zhang (2013) constructed modulus‐based synchronous multisplitting methods by an equivalent reformulation of the linear complementarity problems into a system of fixed‐point equations and studied their convergence. In this paper, we generalize Bai and Zhang’s methods and study modulus‐based synchronous multisplitting multi‐parameters methods for linear complementarity problems. Furthermore, the convergence results of our new method in this paper are weaker than those of Bai and Zhang’s when the system matrix is an H + equ1‐matrix.

Reviews

Required fields are marked *. Your email address will not be published.