Transport energy demand modeling of South Korea using artificial neural network

Transport energy demand modeling of South Korea using artificial neural network

0.00 Avg rating0 Votes
Article ID: iaor20116384
Volume: 39
Issue: 8
Start Page Number: 4644
End Page Number: 4650
Publication Date: Aug 2011
Journal: Energy Policy
Authors:
Keywords: energy, neural networks, simulation, forecasting: applications, economics, statistics: regression
Abstract:

Artificial neural network models were developed to forecast South Korea's transport energy demand. Various independent variables, such as GDP, population, oil price, number of vehicle registrations, and passenger transport amount, were considered and several good models (Model 1 with GDP, population, and passenger transport amount; Model 2 with GDP, number of vehicle registrations, and passenger transport amount; and Model 3 with oil price, number of vehicle registrations, and passenger transport amount) were selected by comparing with multiple linear regression models. Although certain regression models obtained better R‐squared values than neural network models, this does not guarantee the fact that the former is better than the latter because root mean squared errors of the former were much inferior to those of the latter. Also, certain regression model had structural weakness based on P‐value. Instead, neural network models produced more robust results. Forecasted results using the neural network models show that South Korea will consume around 37 MTOE of transport energy in 2025.

Reviews

Required fields are marked *. Your email address will not be published.