The nearest neighbor Spearman footrule distance for bucket, interval, and partial orders

The nearest neighbor Spearman footrule distance for bucket, interval, and partial orders

0.00 Avg rating0 Votes
Article ID: iaor20134025
Volume: 26
Issue: 2
Start Page Number: 310
End Page Number: 332
Publication Date: Aug 2013
Journal: Journal of Combinatorial Optimization
Authors: , ,
Keywords: aggregation, NP-hard, preference modelling, ranking, voting
Abstract:

Comparing and ranking information is an important topic in social and information sciences, and in particular on the web. Its objective is to measure the difference of the preferences of voters on a set of candidates and to compute a consensus ranking. Commonly, each voter provides a total order of all candidates. Recently, this approach was generalized to bucket orders, which allow ties. In this work we further generalize and consider total, bucket, interval and partial orders. The disagreement between two orders is measured by the nearest neighbor Spearman footrule distance, which has not been studied so far. For two bucket orders and for a total and an interval order the nearest neighbor Spearman footrule distance is shown to be computable in linear time, whereas for a total and a partial order the computation is NP‐hard, 4‐approximable and fixed‐parameter tractable. Moreover, in contrast to the well‐known efficient solution of the rank aggregation problem for total orders, we prove the NP‐completeness for bucket orders and establish a 4‐approximation.

Reviews

Required fields are marked *. Your email address will not be published.