The Fibonacci cube Γ
n
is the subgraph of the n‐cube induced by the binary strings that contain no two consecutive 1s. These graphs are applicable as interconnection networks and in theoretical chemistry, and lead to the Fibonacci dimension of a graph. In this paper a survey on Fibonacci cubes is given with an emphasis on their structure, including representations, recursive construction, hamiltonicity, degree sequence and other enumeration results. Their median nature that leads to a fast recognition algorithm is discussed. The Fibonacci dimension of a graph, studies of graph invariants on Fibonacci cubes, and related classes of graphs are also presented. Along the way some new short proofs are given.