Article ID: | iaor20121454 |
Volume: | 45 |
Issue: | 1 |
Start Page Number: | 478 |
End Page Number: | 486 |
Publication Date: | Mar 2012 |
Journal: | Accident Analysis and Prevention |
Authors: | Wang Wei, Liu Pan, Xu Chengcheng, Li Zhibin |
Keywords: | transportation: road |
The study presented in this paper investigated the possibility of using support vector machine (SVM) models for crash injury severity analysis. Based on crash data collected at 326 freeway diverge areas, a SVM model was developed for predicting the injury severity associated with individual crashes. An ordered probit (OP) model was also developed using the same dataset. The research team compared the performance of the SVM model and the OP model. It was found that the SVM model produced better prediction performance for crash injury severity than did the OP model. The percent of correct prediction for the SVM model was found to be 48.8%, which was higher than that produced by the OP model (44.0%). Even though the SVM model may suffer from the multi‐class classification problem, it still provides better prediction results for small proportion injury severities than the OP model does. The research also investigated the potential of using the SVM model for evaluating the impacts of external factors on crash injury severities. The sensitivity analysis results show that the SVM model produced comparable results regarding the impacts of variables on crash injury severity as compared to the OP model. For several variables such as the length of the exit ramp and the shoulder width of the freeway mainline, the results of the SVM model are more reasonable than those of the OP model.