This paper proposes a new decision making/optimization paradigm, the decision making/optimization in changeable spaces (DM/OCS). The unique feature of DM/OCS is that it incorporates human psychology and its dynamics as part of the decision making process and allows the restructuring of the decision parameters. DM/OCS is based on Habitual Domain theory, the decision parameters, the concept of competence set, and the mental operators 7‐8‐9 principles of deep knowledge. The covering and discovering processes are formulated as DM/OCS problems. Some illustrative examples of challenging problems that cannot be solved by traditional decision making/optimization techniques are formulated as DM/OCS problems and solved. In addition, some directions of research related to innovation dynamics, management, artificial intelligence, artificial and e‐economics, scientific discovery, and knowledge extraction are provided in the conclusion.