Using column generation to solve parallel machine scheduling problems with minmax objective functions

Using column generation to solve parallel machine scheduling problems with minmax objective functions

0.00 Avg rating0 Votes
Article ID: iaor20126644
Volume: 15
Issue: 6
Start Page Number: 801
End Page Number: 810
Publication Date: Dec 2012
Journal: Journal of Scheduling
Authors: , ,
Keywords: scheduling, heuristics
Abstract:

In this paper we consider the parallel machine scheduling problem of minimizing an objective function of the minmax type, like maximum lateness, subject to release dates, deadlines, and/or generalized precedence constraints. We use a destructive strategy to compute a lower bound. Here we test the feasibility of a decision problem by applying column generation to compute a bound on the number of machines that we need to feasibly accommodate all jobs. After having derived the lower bound, we try to find a matching upper bound by identifying a feasible schedule with objective function value equal to this lower bound. Our computational results show that our lower bound is so strong that this is almost always possible. We are able to solve problems with up to 160 jobs and 10 machines in 10 minutes on average.

Reviews

Required fields are marked *. Your email address will not be published.