Article ID: | iaor20118154 |
Volume: | 54 |
Issue: | 9-10 |
Start Page Number: | 1979 |
End Page Number: | 1988 |
Publication Date: | Nov 2011 |
Journal: | Mathematical and Computer Modelling |
Authors: | Syed Ali M, Marudai M |
Keywords: | neural networks, markov processes |
In this paper, the problem of robust exponential stability analysis of uncertain discrete‐time recurrent neural networks with Markovian jumping and time‐varying delays is studied. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient criterion is proposed for the global robust exponential stability of discrete‐time recurrent neural networks which contain uncertain parameters and Markovian jumping parameters. The obtained stability criterion is characterized in terms of linear matrix inequalities (LMIs) and can be easily checked by utilizing the efficient LMI toolbox. Two numerical examples are presented to show the effectiveness and conservativeness of the proposed method.