Given non‐empty subsets A and B of a metric space, let
and
be non‐self mappings. Due to the fact that S and T are non‐self mappings, the equations Sx = x and Tx = x are likely to have no common solution, known as a common fixed point of the mappings S and T. Consequently, when there is no common solution, it is speculated to determine an element x that is in close proximity to Sx and Tx in the sense that d(x, Sx) and d(x, Tx) are minimum. As a matter of fact, common best proximity point theorems inspect the existence of such optimal approximate solutions, called common best proximity points, to the equations Sx = x and Tx = x in the case that there is no common solution. It is highlighted that the real valued functions
and
assess the degree of the error involved for any common approximate solution of the equations Sx = x and Tx = x. Considering the fact that, given any element x in A, the distance between x and Sx, and the distance between x and Tx are at least d(A, B), a common best proximity point theorem affirms global minimum of both functions
and
by imposing a common approximate solution of the equations Sx = x and Tx = x to satisfy the constraint that d(x, Sx) = d(x, Tx) = d(A, B). The purpose of this article is to derive a common best proximity point theorem for proximally commuting non‐self mappings, thereby producing common optimal approximate solutions of certain simultaneous fixed point equations in the event there is no common solution.