Article ID: | iaor20122559 |
Volume: | 28 |
Issue: | 12 |
Start Page Number: | 2472 |
End Page Number: | 2482 |
Publication Date: | Dec 2008 |
Journal: | Waste Management |
Authors: | Khaloo Ali R, Dehestani M, Rahmatabadi P |
Keywords: | construction & architecture |
Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire–rubber particles as aggregate in concrete is investigated in this study. Tire–rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate’s volume in concrete. Cylindrical shape concrete specimens 15cm in diameter and 30cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire–rubber concrete.