Article ID: | iaor20122550 |
Volume: | 28 |
Issue: | 12 |
Start Page Number: | 2522 |
End Page Number: | 2531 |
Publication Date: | Dec 2008 |
Journal: | Waste Management |
Authors: | Lei Kampeng, Wang Zhishi |
Keywords: | economics |
The debate over waste management practices has become increasingly important as human activities have begun to overload the biosphere’s assimilative capacity. An effective waste management policy should be based on the principles of sustainable development, with wastes regarded as a potential resource rather than solely as something to eliminate. This approach requires an integrated waste management plan that makes full use of all available technologies. Macao is a highly populated consumer society that lacks natural resources and must therefore import almost all of its life‐supporting goods and raw materials from regions outside the city. During the past 20 years, Macao has experienced an economic boom, accompanied by rapid socioeconomic development. Its discharged wastes have increased steadily during this period. This paper employs emergy analysis to investigate Macao’s waste treatment in 1995, 1999, 2003 and 2004. The emergy of gaseous emissions was estimated to be 4.76×1021 sej in 2004. Since 1992, Macao’s municipal solid waste (MSW) has been incinerated to reduce its volume. The transformity of the fly ash and slag produced by this treatment in 2004, and the electricity generated by the incinerator, equaled 5.11×1011 sej/g, 6.01×1010 sej/g, and 7.61×106 sej/J, respectively. A large investment of natural resources and technology is required for the treatment of wastes; the feedback ratio of wastes, which represents the scale of the treatment of inputs, equaled 0.02 for MSW, 0.11 for sewage, and 0.06 for gaseous emissions.