Switching Stepsize Strategies for Sequential Quadratic Programming

Switching Stepsize Strategies for Sequential Quadratic Programming

0.00 Avg rating0 Votes
Article ID: iaor20114198
Volume: 149
Issue: 2
Start Page Number: 269
End Page Number: 292
Publication Date: May 2011
Journal: Journal of Optimization Theory and Applications
Authors: ,
Keywords: programming: quadratic
Abstract:

A Sequential Quadratic Programming (in short, SQP) algorithm is presented for solving constrained nonlinear programming problems. The algorithm uses three stepsize strategies, in order to achieve global and superlinear convergence. Switching rules are implemented that combine the merits and avoid the drawbacks of the three stepsize strategies. A penalty parameter is determined, using an adaptive strategy that aims to achieve sufficient decrease of the activated merit function. Global convergence is established and it is also shown that, locally, unity step sizes are accepted. Therefore, superlinear convergence is not impeded under standard assumptions. Global convergence and convergence of the stepsizes are displayed on test problems from the Hock and Schittkowski collection.

Reviews

Required fields are marked *. Your email address will not be published.