Layered Working‐Set Trees

Layered Working‐Set Trees

0.00 Avg rating0 Votes
Article ID: iaor2012685
Volume: 63
Issue: 1
Start Page Number: 476
End Page Number: 489
Publication Date: Jun 2012
Journal: Algorithmica
Authors: , , ,
Keywords: search, combinatorial optimization, heuristics
Abstract:

The working‐set bound [Sleator and Tarjan in J. ACM 32(3), 652–686, 1985] roughly states that searching for an element is fast if the element was accessed recently. Binary search trees, such as splay trees, can achieve this property in the amortized sense, while data structures that are not binary search trees are known to have this property in the worst case. We close this gap and present a binary search tree called a layered working‐set tree that guarantees the working‐set property in the worst case. The unified bound [Bădoiu et al. in Theor. Comput. Sci. 382(2), 86–96, 2007] roughly states that searching for an element is fast if it is near (in terms of rank distance) to a recently accessed element. We show how layered working‐set trees can be used to achieve the unified bound to within a small additive term in the amortized sense while maintaining in the worst case an access time that is both logarithmic and within a small multiplicative factor of the working‐set bound.

Reviews

Required fields are marked *. Your email address will not be published.