 
                                                                                | Article ID: | iaor20124028 | 
| Volume: | 9 | 
| Issue: | 2 | 
| Start Page Number: | 109 | 
| End Page Number: | 121 | 
| Publication Date: | May 2012 | 
| Journal: | Discrete Optimization | 
| Authors: | Cornujols Grard, Nannicini Giacomo, Michini Carla | 
| Keywords: | programming: linear, programming: integer | 
The corner relaxation of a mixed‐integer linear program is a central concept in cutting plane theory. In a recent paper Fischetti and Monaci provide an empirical assessment of the strength of the corner and other related relaxations on benchmark problems. In this paper we give a precise characterization of the bounds given by these relaxations for the edge formulation of the maximum stable set problem in a graph.