Article ID: | iaor20123434 |
Volume: | 195 |
Issue: | 1 |
Start Page Number: | 135 |
End Page Number: | 161 |
Publication Date: | May 2012 |
Journal: | Annals of Operations Research |
Authors: | Denux Thierry, Masson Marie-Hlne |
Keywords: | belief functions, evidence theory |
The Dempster‐Shafer theory of belief functions has proved to be a powerful formalism for uncertain reasoning. However, belief functions on a finite frame of discernment Ω are usually defined in the power set 2Ω, resulting in exponential complexity of the operations involved in this framework, such as combination rules. When Ω is linearly ordered, a usual trick is to work only with intervals, which drastically reduces the complexity of calculations. In this paper, we show that this trick can be extrapolated to frames endowed with an arbitrary lattice structure, not necessarily a linear order. This principle makes it possible to apply the Dempster‐Shafer framework to very large frames such as the power set, the set of partitions, or the set of preorders of a finite set. Applications to multi‐label classification, ensemble clustering and preference aggregation are demonstrated.