Given an acyclic digraph D, the competition graph C(D) of D is the graph with the same vertex set as D and two distinct vertices x and y are adjacent in C(D) if and only if there is a vertex v in D such that (x,v) and (y,v) are arcs of D. The competition number κ(G) of a graph G is the least number of isolated vertices that must be added to G to form a competition graph. The purpose of this paper is to prove that the competition number of a graph with exactly two holes is at most three.