Given G = (V, E) a connected undirected graph and a positive integer β(|V|), the vertex separator problem is to find a partition of V into no‐empty three classes A, B, C such that there is no edge between A and B, max{|A|, |B|} ≤ β(|V|) and |C| is minimum. In this paper we consider the vertex separator problem from a polyhedral point of view. We introduce new classes of valid inequalities for the associated polyhedron. Using a natural lower bound for the optimal solution, we present successful computational experiments.