Approximate Bayesian Inference for Survival Models

Approximate Bayesian Inference for Survival Models

0.00 Avg rating0 Votes
Article ID: iaor201112560
Volume: 38
Issue: 3
Start Page Number: 514
End Page Number: 528
Publication Date: Sep 2011
Journal: Scandinavian Journal of Statistics
Authors: , ,
Keywords: markov processes, stochastic processes
Abstract:

Bayesian analysis of time-to-event data, usually called survival analysis, has received increasing attention in the last years. In Cox-type models it allows to use information from the full likelihood instead of from a partial likelihood, so that the baseline hazard function and the model parameters can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inference for any parameter or predictive quantity of interest. On the other side, Bayesian inference often relies on Markov chain Monte Carlo (MCMC) techniques which, from the user point of view, may appear slow at delivering answers. In this article, we show how a new inferential tool named integrated nested Laplace approximations can be adapted and applied to many survival models making Bayesian analysis both fast and accurate without having to rely on MCMC-based inference.

Reviews

Required fields are marked *. Your email address will not be published.