Article ID: | iaor20119364 |
Volume: | 216 |
Issue: | 1 |
Start Page Number: | 127 |
End Page Number: | 139 |
Publication Date: | Jan 2012 |
Journal: | European Journal of Operational Research |
Authors: | Wang Wenbin |
Keywords: | maintenance, repair & replacement |
Spare parts demands are usually generated by the need of maintenance either preventively or at failures. These demands are difficult to predict based on historical data of past spare parts usages, and therefore, the optimal inventory control policy may be also difficult to obtain. However, it is well known that maintenance costs are related to the availability of spare parts and the penalty cost of unavailable spare parts consists of usually the cost of, for example, extended downtime for waiting the spare parts and the emergency expedition cost for acquiring the spare parts. On the other hand, proper planned maintenance intervention can reduce the number of failures and associated costs but its performance also depends on the availability of spare parts. This paper presents the joint optimisation for both the inventory control of the spare parts and the Preventive Maintenance (PM) inspection interval. The decision variables are the order interval, PM interval and order quantity. Because of the random nature of plant failures, stochastic cost models for spare parts inventory and maintenance are derived and an enumeration algorithm with stochastic dynamic programming is employed for finding the joint optimal solutions over a finite time horizon. The delay‐time concept developed for inspection modelling is used to construct the probabilities of the number of failures and the number of the defective items identified at a PM epoch, which has not been used in this type of problems before. The inventory model follows a periodic review policy but with the demand governed by the need for spare parts due to maintenance. We demonstrate the developed model using a numerical example.