Article ID: | iaor20116149 |
Volume: | 62 |
Issue: | 8 |
Start Page Number: | 1555 |
End Page Number: | 1565 |
Publication Date: | Aug 2011 |
Journal: | Journal of the Operational Research Society |
Authors: | Wang X, Tang L |
Keywords: | heuristics, programming: integer |
This paper investigates a new problem, called single machine scheduling with multiple job processing ability, which is derived from the production of the continuous walking beaming reheating furnace in iron and steel industry. In this problem, there is no batch and the jobs enter and leave the machine one by one and continuously, which is different from general single machine batch scheduling problem where the jobs in a batch share the same start and departure time. Therefore, the start time and the departure time of a job depend on not only the job sequence but also the machine capacity. This problem is also different from the single semi‐continuous batching machine scheduling recently studied in the literature, where the jobs are processed in batch mode and a new batch cannot be started for processing until the processing of the previous batch is completed though jobs in the same batch enter and leave the machine one by one. The objective of this problem is to minimize the makespan. We formulate this problem as a mixed integer linear programming model and propose a particle swarm optimization (PSO) algorithm for this problem. Computational results on randomly generated instances show that the proposed PSO algorithm is effective.