Article ID: | iaor20118274 |
Volume: | 215 |
Issue: | 2 |
Start Page Number: | 439 |
End Page Number: | 445 |
Publication Date: | Dec 2011 |
Journal: | European Journal of Operational Research |
Authors: | Chang Ching-Ter |
Goal programming (GP) has been, and still is, the most widely used technique for solving multiple‐criteria decision problems and multiple‐objective decision problems by finding a set of satisfying solutions. However, the major limitation of goal programming is that can only use aspiration levels with scalar value for solving multiple objective problems. In order to solve this problem multi‐choice goal programming (MCGP) was proposed by Chang (2007). Following the idea of MCGP this study proposes a new concept of level achieving in the utility functions to replace the aspiration level with scalar value in classical GP and MCGP for multiple objective problems. According to this idea, it is possible to use the skill of MCGP with utility functions to solve multi‐objective problems. The major contribution of using the utility functions of MCGP is that they can be used as measuring instruments to help decision makers make the best/appropriate policy corresponding to their goals with the highest level of utility achieved. In addition, the above properties can improve the practical utility of MCGP in solving more real‐world decision/management problems.