Article ID: | iaor20118127 |
Volume: | 61 |
Issue: | 2 |
Start Page Number: | 320 |
End Page Number: | 341 |
Publication Date: | Oct 2011 |
Journal: | Algorithmica |
Authors: | Ioannidou Kyriaki, Mertzios B, Nikolopoulos D |
Keywords: | graphs, programming: dynamic |
The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno (2004), where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm uses a dynamic programming approach and runs in