An Efficient and Numerically Stable Method for Computing Bounds for the Interval Availability Distribution

An Efficient and Numerically Stable Method for Computing Bounds for the Interval Availability Distribution

0.00 Avg rating0 Votes
Article ID: iaor20115094
Volume: 23
Issue: 2
Start Page Number: 268
End Page Number: 283
Publication Date: Mar 2011
Journal: INFORMS Journal on Computing
Authors:
Keywords: markov processes, maintenance, repair & replacement
Abstract:

This paper is concerned with the computation of the interval availability (proportion of time in a time interval in which the system is up) distribution of a fault-tolerant system modeled by a finite (homogeneous) continuous-time Markov chain (CTMC). General-purpose methods for performing that computation tend to be very expensive when the CTMC and the time interval are large. Based on a previously available method (regenerative transformation) for computing the interval availability complementary distribution, we develop a method called bounding regenerative transformation for the computation of bounds for that measure. Similar to regenerative transformation, bounding regenerative transformation requires the selection of a regenerative state. The method is targeted at a certain class of models, including both exact and bounding failure/repair models of fault-tolerant systems with increasing structure function, with exponential failure and repair time distributions and repair in every state with failed components having failure rates much smaller than repair rates (F/R models), with a ‘natural’ selection for the regenerative state. The method is numerically stable and computes the bounds with well-controlled error. For models in the targeted class and the natural selection for the regenerative state, computational cost should be traded off with bounds tightness through a control parameter. For large models in the class, the version of the method that should have the smallest computational cost should have small computational cost relative to the model size if the value above which the interval availability has to be guaranteed to be is close to 1. In addition, under additional conditions satisfied by F/R models, the bounds obtained with the natural selection for the regenerative state by the version that should have the smallest computational cost seem to be tight for all time intervals or not small time intervals, depending on whether the initial probability distribution of the CTMC is concentrated in the regenerative state or not.

Reviews

Required fields are marked *. Your email address will not be published.