A robust implementation of a sequential quadratic programming algorithm with successive error restoration

A robust implementation of a sequential quadratic programming algorithm with successive error restoration

0.00 Avg rating0 Votes
Article ID: iaor20113738
Volume: 5
Issue: 2
Start Page Number: 283
End Page Number: 296
Publication Date: May 2011
Journal: Optimization Letters
Authors:
Keywords: programming: quadratic
Abstract:

We consider sequential quadratic programming methods for solving constrained nonlinear programming problems. It is generally believed that these methods are sensitive to the accuracy by which partial derivatives are provided. One reason is that differences of gradients of the Lagrangian function are used for updating a quasi‐Newton matrix, e.g., by the BFGS formula. The purpose of this paper is to show by numerical experimentation that the method can be stabilized substantially. The algorithm applies non‐monotone line search and internal and external restarts in case of errors due to inaccurate derivatives while computing the search direction. Even in case of large random errors leading to partial derivatives with at most one correct digit, termination subject to an accuracy of 10- can be achieved in 90% of 306 problems of a standard test suite. On the other hand, the original version with monotone line search and without restarts solves only 30% of these problems under the same test environment. In addition, we show how initial and periodic scaled restarts improve the efficiency in situations with slow convergence.

Reviews

Required fields are marked *. Your email address will not be published.