We consider the problem of nonpreemptively scheduling a set of n jobs with equal processing times on m parallel machines so as to minimize the makespan. Each job has a prespecified set of machines on which it can be processed, called its eligible set. We consider the most general case of machine eligibility constraints as well as special cases of nested and inclusive eligible sets. Both online and offline models are considered. For offline problems we develop optimal algorithms that run in polynomial time, while for online problems we focus on the development of optimal algorithms of a new and more elaborate structure as well as approximation algorithms with good competitive ratios.