Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

0.00 Avg rating0 Votes
Article ID: iaor20112036
Volume: 59
Issue: 3
Start Page Number: 369
End Page Number: 386
Publication Date: Mar 2011
Journal: Algorithmica
Authors: ,
Keywords: evolutionary algorithms
Abstract:

Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read and to apply since it requires two bounds on the moment‐generating (exponential) function of the drift. A recent work identifies a specialization of this drift theorem that is much easier to apply. Nevertheless, it is not as simple and not as general as possible. The present paper picks up Hajek’s line of thought to prove a drift theorem that is very easy to use in evolutionary computation. Only two conditions have to be verified, one of which holds for virtually all EAs with standard mutation. The other condition is a bound on what is really relevant, the drift. Applications show how previous analyses involving the complicated theorem can be redone in a much simpler and clearer way. In some cases even improved results may be achieved. Therefore, the simplified theorem is also a didactical contribution to the runtime analysis of EAs.

Reviews

Required fields are marked *. Your email address will not be published.