Article ID: | iaor20107710 |
Volume: | 72 |
Issue: | 2 |
Start Page Number: | 273 |
End Page Number: | 310 |
Publication Date: | Oct 2010 |
Journal: | Mathematical Methods of Operations Research |
Authors: | Djehiche Boualem, Andersson Daniel |
Keywords: | financial |
We study relaxed stochastic control problems where the state equation is a one dimensional linear stochastic differential equation with random and unbounded coefficients. The two main results are existence of an optimal relaxed control and necessary conditions for optimality in the form of a relaxed maximum principle. The main motivation is an optimal bond portfolio problem in a market where there exists a continuum of bonds and the portfolio weights are modeled as measure-valued processes on the set of times to maturity.